Wild quotient surface singularities whose dual graphs are not star-shaped

Hiroyuki Ito, Stefan Schröer

研究成果: Article査読

7 被引用数 (Scopus)

抄録

We obtain results that answer certain questions of Lorenzini on wild quotient singularities in dimension two: Using Kato's theory of log structures and log regularity, we prove that the dual graph of exceptional curves on the resolution of singularities contains at least one node. Furthermore, we show that diagonal quotients for Hermitian curves by analogues of Heisenberg groups lead to examples of wild quotient singularities where the dual graph contains at least two nodes.

本文言語English
ページ(範囲)951-986
ページ数36
ジャーナルAsian Journal of Mathematics
19
5
DOI
出版ステータスPublished - 2015

フィンガープリント

「Wild quotient surface singularities whose dual graphs are not star-shaped」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル