TY - JOUR
T1 - Usefulness of percutaneous estradiol-loaded PLGA-PEG-PLGA nanoparticles for the treatment of osteoporosis
AU - Sakurai, Ryuse
AU - Takeuchi, Issei
AU - Makino, Kimiko
AU - Itoh, Fumio
AU - Saitoh, Akiyoshi
N1 - Publisher Copyright:
© 2024
PY - 2024/6
Y1 - 2024/6
N2 - Compared with poly (DL-lactide-co-glycolide) (PLGA) nanoparticles, triblock copolymer (PLGA-PEG-PLGA) nanoparticles composed of PLGA and polyethylene glycol (PEG) may improve the skin permeability of drugs. In this study, the usefulness of estradiol-loaded (E2-loaded) PLGA-PEG-PLGA nanoparticles in the treatment of osteoporosis was investigated by comparison with E2-loaded PLGA nanoparticles. The cumulative E2 permeation of each nanoparticle through rat skin was quantified using a Franz cell. The results showed that PLGA-PEG-PLGA nanoparticles had significantly higher permeation than PLGA nanoparticles. Next, in vivo treatment experiments were conducted using an ovariectomized rat model of osteoporosis. Nanoparticles were administered once per week in combination with iontophoresis. At 6 weeks after the initiation of treatment, significant improvement in bone density was observed in the treated group compared with the untreated group. The improvement in bone density tended to be greater in the PLGA-PEG-PLGA nanoparticle group versus the PLGA nanoparticle group. This may be attributed to the higher hydrophilicity of the particle surface of PLGA-PEG-PLGA nanoparticles compared with PLGA nanoparticles and the improved skin permeability of the particles through the trans-adnexal pathway.
AB - Compared with poly (DL-lactide-co-glycolide) (PLGA) nanoparticles, triblock copolymer (PLGA-PEG-PLGA) nanoparticles composed of PLGA and polyethylene glycol (PEG) may improve the skin permeability of drugs. In this study, the usefulness of estradiol-loaded (E2-loaded) PLGA-PEG-PLGA nanoparticles in the treatment of osteoporosis was investigated by comparison with E2-loaded PLGA nanoparticles. The cumulative E2 permeation of each nanoparticle through rat skin was quantified using a Franz cell. The results showed that PLGA-PEG-PLGA nanoparticles had significantly higher permeation than PLGA nanoparticles. Next, in vivo treatment experiments were conducted using an ovariectomized rat model of osteoporosis. Nanoparticles were administered once per week in combination with iontophoresis. At 6 weeks after the initiation of treatment, significant improvement in bone density was observed in the treated group compared with the untreated group. The improvement in bone density tended to be greater in the PLGA-PEG-PLGA nanoparticle group versus the PLGA nanoparticle group. This may be attributed to the higher hydrophilicity of the particle surface of PLGA-PEG-PLGA nanoparticles compared with PLGA nanoparticles and the improved skin permeability of the particles through the trans-adnexal pathway.
UR - http://www.scopus.com/inward/record.url?scp=85192802756&partnerID=8YFLogxK
U2 - 10.1016/j.rinma.2024.100577
DO - 10.1016/j.rinma.2024.100577
M3 - Article
AN - SCOPUS:85192802756
SN - 2590-048X
VL - 22
JO - Results in Materials
JF - Results in Materials
M1 - 100577
ER -