TY - GEN
T1 - Time-to-Collision-Aware Lane-Change Strategy Based on Potential Field and Cubic Polynomial for Autonomous Vehicles
AU - Lin, Pengfei
AU - Javanmardi, Ehsan
AU - Tao, Ye
AU - Chauhan, Vishal
AU - Nakazato, Jin
AU - Tsukada, Manabu
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - Making safe and successful lane changes (LCs) is one of the many vitally important functions of autonomous vehicles (AVs) that are needed to ensure safe driving on expressways. Recently, the simplicity and real-time performance of the potential field (PF) method have been leveraged to design decision and planning modules for AVs. However, the LC trajectory planned by the PF method is usually lengthy and takes the ego vehicle laterally parallel and close to the obstacle vehicle, which creates a dangerous situation if the obstacle vehicle suddenly steers. To mitigate this risk, we propose a time-to-collision-aware LC (TTCA-LC) strategy based on the PF and cubic polynomial in which the TTC constraint is imposed in the optimized curve fitting. The proposed approach is evaluated using MATLAB/Simulink under high-speed conditions in a comparative driving scenario. The simulation results indicate that the TTCA-LC method performs better than the conventional PF-based LC (CPF-LC) method in generating shorter, safer, and smoother trajectories. The length of the LC trajectory is shortened by over 27.1%, and the curvature is reduced by approximately 56.1% compared with the CPF-LC method.
AB - Making safe and successful lane changes (LCs) is one of the many vitally important functions of autonomous vehicles (AVs) that are needed to ensure safe driving on expressways. Recently, the simplicity and real-time performance of the potential field (PF) method have been leveraged to design decision and planning modules for AVs. However, the LC trajectory planned by the PF method is usually lengthy and takes the ego vehicle laterally parallel and close to the obstacle vehicle, which creates a dangerous situation if the obstacle vehicle suddenly steers. To mitigate this risk, we propose a time-to-collision-aware LC (TTCA-LC) strategy based on the PF and cubic polynomial in which the TTC constraint is imposed in the optimized curve fitting. The proposed approach is evaluated using MATLAB/Simulink under high-speed conditions in a comparative driving scenario. The simulation results indicate that the TTCA-LC method performs better than the conventional PF-based LC (CPF-LC) method in generating shorter, safer, and smoother trajectories. The length of the LC trajectory is shortened by over 27.1%, and the curvature is reduced by approximately 56.1% compared with the CPF-LC method.
UR - https://www.scopus.com/pages/publications/85167988305
U2 - 10.1109/IV55152.2023.10186619
DO - 10.1109/IV55152.2023.10186619
M3 - Conference contribution
AN - SCOPUS:85167988305
T3 - IEEE Intelligent Vehicles Symposium, Proceedings
BT - IV 2023 - IEEE Intelligent Vehicles Symposium, Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 34th IEEE Intelligent Vehicles Symposium, IV 2023
Y2 - 4 June 2023 through 7 June 2023
ER -