Threshold Between Short and Long-range Potentials for Non-local Schrödinger Operators

Atsuhide Ishida, Kazuyuki Wada

研究成果: Article査読

2 被引用数 (Scopus)

抄録

We develop scattering theory for non-local Schrödinger operators defined by functions of the Laplacian that include its fractional power (−Δ)ρ with 0 < ρ⩽ 1. In particular, our function belongs to a wider class than the set of Bernstein functions. By showing the existence and non-existence of the wave operators, we clarify the threshold between the short and long-range decay conditions for perturbational potentials.

本文言語English
論文番号32
ジャーナルMathematical Physics Analysis and Geometry
23
3
DOI
出版ステータスPublished - 1 9月 2020

フィンガープリント

「Threshold Between Short and Long-range Potentials for Non-local Schrödinger Operators」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル