Testing parallelism and confidence intervals of level difference in an intraclass correlation model with monotone missing data

Yuichiro Saeki, Takashi Seo, Hiroto Hyakutake

研究成果: Article査読

1 被引用数 (Scopus)

抄録

In this article, we consider a parallelism test and confidence interval of level difference with uniform covariance structure wherein each dataset has a monotone missing data. A likelihood ratio test statistic is derived using the maximum likelihood estimators of the parameters for the transformed dataset of a contrast matrix. Furthermore, its exact null distribution is presented using a contrast transformation matrix. Moreover, an approximate confidence interval of level difference in two sample problem is presented under parallelism using the upper percentiles of Student’s t-distribution. Finally, a Monte Carlo simulation and a numerical example are given.

本文言語English
ページ(範囲)6147-6160
ページ数14
ジャーナルCommunications in Statistics - Theory and Methods
52
17
DOI
出版ステータスPublished - 2023

フィンガープリント

「Testing parallelism and confidence intervals of level difference in an intraclass correlation model with monotone missing data」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル