Sphericity Test on Variance-Covariance Matrix with Monotone Missing Data

Tetsuya Sato, Ayaka Yagi, Takashi Seo

研究成果: Article査読

抄録

This study considers the sphericity test, a specific test of variance-covariance matrix under monotone missing data for a one-sample problem. We provide the likelihood ratio (LR) and derive an asymptotic expansion of the likelihood ratio test (LRT) statistic and modified LRT statistic for the null distribution. We also derive the upper percentiles of the LRT statistic and modified LRT statistic when the null hypothesis holds, and provide approximate upper percentiles. Furthermore, we prove that the LR under monotone missing data is affine invariant under the null hypothesis. For complete data, we provide an asymptotic expansion of the LRT statistic and modified LRT statistic for the null distribution. Furthermore, we numerically evaluate the actual type I error rates for the approximate upper percentiles using Monte Carlo simulation and provide examples of the LRT statistic and modified LRT statistic and approximate upper percentiles under monotone missing data.

本文言語English
論文番号16
ジャーナルJournal of Statistical Theory and Practice
19
2
DOI
出版ステータスPublished - 6月 2025

フィンガープリント

「Sphericity Test on Variance-Covariance Matrix with Monotone Missing Data」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル