REPRESENTATION THEORY OF SKEW BRACES

Yuta Kozakai, Cindy Tsang

研究成果: Article査読

抄録

According to Letourmy and Vendramin, a representation of a skew brace is a pair of representations on the same vector space, one for the additive group and the other for the multiplicative group, that satisfies a certain compatibility condition. Following their definition, we shall explain how some of the results from representation theory of groups, such as Maschke’s theorem and Clifford’s theorem, extend naturally to that of skew braces. We shall also give some concrete examples to illustrate that skew brace representations are more difficult to classify than group representations.

本文言語English
ページ(範囲)149-164
ページ数16
ジャーナルInternational Journal of Group Theory
14
3
DOI
出版ステータスPublished - 2025

フィンガープリント

「REPRESENTATION THEORY OF SKEW BRACES」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル