Product Embedding for Large-Scale Disaggregated Sales Data

Yinxing Li, Nobuhiko Terui

研究成果: Conference contribution査読

1 被引用数 (Scopus)

抄録

This paper recommends a system that incorporates the marketing environment and customer heterogeneity. We employ and extend Item2Vec and Item2Vec approaches to high-dimensional store data. Our study not only aims to propose a model with better forecasting precision but also to reveal how customer demographics affect customer behaviour. Our empirical results show that marketing environment and customer heterogeneity increase forecasting precision and those demographics have a significant influence on customer behaviour through the hierarchical model.

本文言語English
ホスト出版物のタイトル13th International Conference on Knowledge Discovery and Information Retrieval, KDIR 2021 as part of IC3K 2021 - Proceedings of the 13th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management
編集者Rita Cucchiara, Ana Fred, Joaquim Filipe
出版社Science and Technology Publications, Lda
ページ69-75
ページ数7
ISBN(電子版)9789897585333
DOI
出版ステータスPublished - 2021
イベント13th International Conference on Knowledge Discovery and Information Retrieval, KDIR 2021 as part of 13th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, IC3K 2021 - Virtual, Online
継続期間: 25 10月 202227 10月 2022

出版物シリーズ

名前International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, IC3K - Proceedings
1
ISSN(電子版)2184-3228

Conference

Conference13th International Conference on Knowledge Discovery and Information Retrieval, KDIR 2021 as part of 13th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, IC3K 2021
CityVirtual, Online
Period25/10/2227/10/22

フィンガープリント

「Product Embedding for Large-Scale Disaggregated Sales Data」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル