PHYSIOLOGICAL MODELING WITH MULTISPECTRAL IMAGING FOR HEART RATE ESTIMATION

Kosuke Kurihara, Yoshihiro Maeda, Daisuke Sugimura, Takayuki Hamamoto

研究成果: Conference contribution査読

1 被引用数 (Scopus)

抄録

Heart rate (HR) is a key parameter in evaluating the physiological and emotional states of a person. In this paper, we propose a novel video-based heart rate (HR) estimation method based on physiological modeling with multispectral imaging. To capture blood volume pulse (BVP) associated with a person's heartbeat, we utilize a camera that records multispectral video consisting of red, green, blue, and near-infrared information. The novelty of the proposed method is the incorporation of a physiological BVP model into a multispectral HR estimation framework. The integration of a physiological model-based BVP signal extraction scheme into an adaptive multispectral framework enables the suppression of noise derived from ambient light and the accurate extraction of the BVP signal, thereby enhancing HR estimation performance. The experiments using RGB/NIR video datasets demonstrate the effectiveness of the proposed method.

本文言語English
ホスト出版物のタイトル2024 IEEE International Conference on Image Processing, ICIP 2024 - Proceedings
出版社IEEE Computer Society
ページ2957-2963
ページ数7
ISBN(電子版)9798350349399
DOI
出版ステータスPublished - 2024
イベント31st IEEE International Conference on Image Processing, ICIP 2024 - Abu Dhabi, United Arab Emirates
継続期間: 27 10月 202430 10月 2024

出版物シリーズ

名前Proceedings - International Conference on Image Processing, ICIP
ISSN(印刷版)1522-4880

Conference

Conference31st IEEE International Conference on Image Processing, ICIP 2024
国/地域United Arab Emirates
CityAbu Dhabi
Period27/10/2430/10/24

フィンガープリント

「PHYSIOLOGICAL MODELING WITH MULTISPECTRAL IMAGING FOR HEART RATE ESTIMATION」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル