On global existence for semilinear wave equations with space-dependent critical damping

研究成果: Article査読

1 被引用数 (Scopus)

抄録

The global existence for semilinear wave equations with space-dependent critical damping ∂2 t u - Δu + V0 jxj ∂tu = f(u) in an exterior domain is dealt with, where f(u) = |u|p1u and f(u) = |u|p are in mind. Existence and non-existence of global-in-time solutions are discussed. To obtain global existence, a weighted energy estimate for the linear problem is crucial. The proof of such a weighted energy estimate contains an alternative proof of energy estimates established by Ikehata-Todorova-Yordanov [J. Math. Soc. Japan (2013), 183-236] but the argument in this paper clarifies the precise dependence of the location of the support of initial data. The blowup phenomena are verified by using a test function method with positive harmonic functions satisfying the Dirichlet boundary condition.

本文言語English
ページ(範囲)603-627
ページ数25
ジャーナルJournal of the Mathematical Society of Japan
75
2
DOI
出版ステータスPublished - 4月 2023

フィンガープリント

「On global existence for semilinear wave equations with space-dependent critical damping」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル