On continuity of the roots of a parametric zero dimensional multivariate polynomial ideal

Yosuke Sato, Ryoya Fukasaku, Hiroshi Sekigawa

研究成果: Conference contribution査読

3 被引用数 (Scopus)

抄録

Let F = ( f1 (Ā,X¯ ), . . ., fl (Ā,X¯ )) be a finite set of polynomials in Q[Ā,X¯ ] with variables Ā = A1, . . .,Am and X¯ = X1, . . .,Xn . We study the continuity of the map θ from an element ā of Cm to a subset of Cn defined by θ (ā) = “the zeros of the polynomial ideal hf1 (ā,X¯ ), . . ., fl (ā,X¯ )i”. Let G = ((G1, S1), . . ., (Gk , Sk )) be a comprehensive Gröbner system of hF i regarding Ā as parameters. By a basic property of a comprehensive Gröbner system, when the ideal hf1 (ā,X¯ ), . . ., fl (ā,X¯ )i is zero dimensional for some ā ∈ Si , it is also zero dimensional for any ā ∈ Si and the cardinality of θ (ā) is identical on Si counting their multiplicities. In this paper, we prove that θ is also continuous on Si . Our result ensures the correctness of an algorithm for real quantifier elimination one of the authors has recently developed.

本文言語English
ホスト出版物のタイトルISSAC 2018 - Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation
出版社Association for Computing Machinery
ページ359-365
ページ数7
ISBN(電子版)9781450355506
DOI
出版ステータスPublished - 11 7月 2018
イベント43rd ACM International Symposium on Symbolic and Algebraic Computation, ISSAC 2018 - New York, United States
継続期間: 16 7月 201819 7月 2018

出版物シリーズ

名前Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC

Conference

Conference43rd ACM International Symposium on Symbolic and Algebraic Computation, ISSAC 2018
国/地域United States
CityNew York
Period16/07/1819/07/18

フィンガープリント

「On continuity of the roots of a parametric zero dimensional multivariate polynomial ideal」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル