Object Recognition Network using Continuous Roadside Cameras

Gunhee Cho, Yusuke Shinyama, Jin Nakazato, Kazuki Maruta, Kei Sakaguchi

研究成果: Conference contribution査読

7 被引用数 (Scopus)

抄録

For the purpose of establishing a digital twin society, this paper proposes an object recognition network architecture using high-definition (HD) camera images. HD camera is installed to the edge computing resource in Road-Side Unit (RSU). The edge computing resource detects vehicles by object detection and Re-ID function based on deep learning. Its key feature is to reduce the amount of network data traffic by extracting vehicle images and directly transferring them to neighboring RSUs, i.e. vehicle identification and tracking can be achieved in the localized backhaul network. This paper experimentally verifies its fundamental feasibility using outdoor testbed field. The proposed framework can significantly reduce the data traffic by more than 90% while maintaining vehicle Re-ID accuracy.

本文言語English
ホスト出版物のタイトル2022 IEEE 95th Vehicular Technology Conference - Spring, VTC 2022-Spring - Proceedings
出版社Institute of Electrical and Electronics Engineers Inc.
ISBN(電子版)9781665482431
DOI
出版ステータスPublished - 2022
イベント95th IEEE Vehicular Technology Conference - Spring, VTC 2022-Spring - Helsinki, Finland
継続期間: 19 6月 202222 6月 2022

出版物シリーズ

名前IEEE Vehicular Technology Conference
2022-June
ISSN(印刷版)1550-2252

Conference

Conference95th IEEE Vehicular Technology Conference - Spring, VTC 2022-Spring
国/地域Finland
CityHelsinki
Period19/06/2222/06/22

フィンガープリント

「Object Recognition Network using Continuous Roadside Cameras」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル