Noise Reduced Common PCA for High-Dimensional, Low-Sample Size Multi-View Data

Hiroki Hasegawa, Homura Kawamura, Ryota Shin, Kazuyoshi Yata, Yukihiko Okada, Jun Kunimatsu

研究成果: Conference contribution査読

1 被引用数 (Scopus)

抄録

High-Dimensional Low-Sample Size (HDLSS) data pose significant challenges in fields like medicine and neuroscience. Traditional principal component analysis (PCA) often fails under these conditions, leading to unstable eigenvalue estimation. This study introduces Noise Reduced-Common Principal Component Analysis (NR-CPCA), a method that combines Common Principal Component Analysis (CPCA) with a noise reduction technique to enhance eigenvalue stability and reliability in HDLSS data. By comparing eigenvalue estimations from NR-CPCA and traditional CPCA across various dimensions (1000, 2000, 3000) and sample sizes (10 to 120), we demonstrate that NR-CPCA mitigates noise effects more effectively, ensuring stable principal component selection. Simulation results confirm that NR-CPCA reduces variability in eigenvalue estimation, making it a valuable tool for dimensionality reduction in multi-view data. Despite limitations in simulation-based validation, NR-CPCA shows promise for real-world applications in data-intensive fields. Future research should focus on refining this method and applying it to diverse datasets to fully realize its potential. NR-CPCA provides an important advancement for researchers dealing with HDLSS data, promoting more accurate analysis and contributing to progress in data science, biology, and neuroscience.

本文言語English
ホスト出版物のタイトルProceedings of the 6th International Conference on Statistics
ホスト出版物のサブタイトルTheory and Applications, ICSTA 2024
編集者Noelle Samia
出版社Avestia Publishing
ISBN(印刷版)9781990800429
DOI
出版ステータスPublished - 2024
イベント6th International Conference on Statistics: Theory and Applications, ICSTA 2024 - Barcelona, Spain
継続期間: 19 8月 202421 8月 2024

出版物シリーズ

名前Proceedings of the International Conference on Statistics
ISSN(電子版)2562-7767

Conference

Conference6th International Conference on Statistics: Theory and Applications, ICSTA 2024
国/地域Spain
CityBarcelona
Period19/08/2421/08/24

フィンガープリント

「Noise Reduced Common PCA for High-Dimensional, Low-Sample Size Multi-View Data」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル