TY - JOUR
T1 - Molecular mechanisms and tumor biological aspects of 5-fluorouracil resistance in hct116 human colorectal cancer cells
AU - Kurasaka, Chinatsu
AU - Ogino, Yoko
AU - Sato, Akira
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/3/2
Y1 - 2021/3/2
N2 - 5-Fluorouracil (5-FU) is a cornerstone drug used in the treatment of colorectal cancer (CRC). However, the development of resistance to 5-FU and its analogs remain an unsolved problem in CRC treatment. In this study, we investigated the molecular mechanisms and tumor biological aspects of 5-FU resistance in CRC HCT116 cells. We established an acquired 5-FU-resistant cell line, HCT116RF10. HCT116RF10 cells were cross-resistant to the 5-FU analog, fluorodeoxyuri-dine. In contrast, HCT116RF10 cells were collaterally sensitive to SN-38 and CDDP compared with the parental HCT16 cells. Whole-exome sequencing revealed that a cluster of genes associated with the 5-FU metabolic pathway were not significantly mutated in HCT116 or HCT116RF10 cells. Interestingly, HCT116RF10 cells were regulated by the function of thymidylate synthase (TS), a 5-FU active metabolite 5-fluorodeoxyuridine monophosphate (FdUMP) inhibiting enzyme. Half of the TS was in an active form, whereas the other half was in an inactive form. This finding indicates that 5-FU-resistant cells exhibited increased TS expression, and the TS enzyme is used to trap FdUMP, resulting in resistance to 5-FU and its analogs.
AB - 5-Fluorouracil (5-FU) is a cornerstone drug used in the treatment of colorectal cancer (CRC). However, the development of resistance to 5-FU and its analogs remain an unsolved problem in CRC treatment. In this study, we investigated the molecular mechanisms and tumor biological aspects of 5-FU resistance in CRC HCT116 cells. We established an acquired 5-FU-resistant cell line, HCT116RF10. HCT116RF10 cells were cross-resistant to the 5-FU analog, fluorodeoxyuri-dine. In contrast, HCT116RF10 cells were collaterally sensitive to SN-38 and CDDP compared with the parental HCT16 cells. Whole-exome sequencing revealed that a cluster of genes associated with the 5-FU metabolic pathway were not significantly mutated in HCT116 or HCT116RF10 cells. Interestingly, HCT116RF10 cells were regulated by the function of thymidylate synthase (TS), a 5-FU active metabolite 5-fluorodeoxyuridine monophosphate (FdUMP) inhibiting enzyme. Half of the TS was in an active form, whereas the other half was in an inactive form. This finding indicates that 5-FU-resistant cells exhibited increased TS expression, and the TS enzyme is used to trap FdUMP, resulting in resistance to 5-FU and its analogs.
KW - 5-Fluorouracil
KW - Colorectal cancer cells
KW - Drug resistance
KW - Exome sequencing
KW - Thymidylate synthase
UR - http://www.scopus.com/inward/record.url?scp=85102376814&partnerID=8YFLogxK
U2 - 10.3390/ijms22062916
DO - 10.3390/ijms22062916
M3 - Article
C2 - 33805673
AN - SCOPUS:85102376814
VL - 22
SP - 1
EP - 15
JO - International Journal of Molecular Sciences
JF - International Journal of Molecular Sciences
SN - 1661-6596
IS - 6
M1 - 2916
ER -