Low-temperature spark plasma sintering of ZrW2-xMoxO8 exhibiting controllable negative thermal expansion

Hui Wei, Marin Hasegawa, Shunsuke Mizutani, Akihisa Aimi, Kenjiro Fujimoto, Keishi Nishio

研究成果: Article査読

2 被引用数 (Scopus)


Molybdenum-doped zirconiumtungstate (ZrW2-xMoxO8) has been widely studied because of its large isotropic coefficient of negative thermal expansion (NTE). However, low density and poor sinterability limit its production and application. In this study, relative density greater than 90% single-phase ZrW2-xMoxO8 (0.0 ≤ x ≤ 1.0) sintered bodies were fabricated by spark plasma sintering (500-600 °C for 10 min) using ZrW2-xMoxO7 (OH)2 ·2H2O precursor powders as the starting material. High-temperature X-ray diffraction and thermomechanical analysis were used to investigate the change in the order-disorder phase transition temperature of the sintered materials; it gradually dropped from 170 °C at x = 0.0 to 78 °C at x = 0.5, and then to below room temperature at x ≥ 0.7. In addition, all sintered bodies exhibited NTE behavior. The NTE coefficient was controllable by changing the x value as follows: from -7.85 × 10-6 °C-1 (x = 0) to -9.01 × 10-6 °C-1 (x = 0.6) and from -3.22 × 10-6 °C-1 (x = 0) to -2.50 × 10-6 °C-1 (x = 1.0) before and after the phase transition, respectively. Rietveld structure refinement results indicate that the change in the NTE coefficient can be straightforwardly traced to the thermodynamic instability of the terminal oxygen atoms, which only have one coordination.

出版ステータスPublished - 1 9月 2018


「Low-temperature spark plasma sintering of ZrW2-xMoxO8 exhibiting controllable negative thermal expansion」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。