Improving the Accuracy of Gait Detection Using Computer Vision

Sota Sugiyama, Yuna Ogiso, Masataka Yamamoto, Yuto Ishige, Hiroshi Takemura, Naoyuki Aikawa

研究成果: Conference contribution査読

1 被引用数 (Scopus)

抄録

Using computer vision for gait analysis is easier and more cost-effective to implement in the field than using wearable devices or motion capture, etc. OpenPose is one of the freely available skeletal detection algorithms, but the accuracy of skeletal detection is not always high. Therefore, in this paper, the gait cycle is derived from the skeletal coordinate data obtained by general OpenPose. Based on the gait cycle, we propose a method to predict the coordinates and correct the skeletal coordinates.

本文言語English
ホスト出版物のタイトル2023 IEEE Region 10 Symposium, TENSYMP 2023
出版社Institute of Electrical and Electronics Engineers Inc.
ISBN(電子版)9781665482585
DOI
出版ステータスPublished - 2023
イベント2023 IEEE Region 10 Symposium, TENSYMP 2023 - Canberra, Australia
継続期間: 6 9月 20238 9月 2023

出版物シリーズ

名前2023 IEEE Region 10 Symposium, TENSYMP 2023

Conference

Conference2023 IEEE Region 10 Symposium, TENSYMP 2023
国/地域Australia
CityCanberra
Period6/09/238/09/23

フィンガープリント

「Improving the Accuracy of Gait Detection Using Computer Vision」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル