Global dynamics of difference equations for SIR epidemic models with a class of nonlinear incidence rates

Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya, Giuseppe Izzo, Antonia Vecchio

研究成果: Article査読

55 被引用数 (Scopus)

抄録

In this paper, by applying a variation of the backward Euler method, we propose a discrete-time SIR epidemic model whose discretization scheme preserves the global asymptotic stability of equilibria for a class of corresponding continuous-time SIR epidemic models. Using discrete-time analogue of Lyapunov functionals, the global asymptotic stability of the equilibria is fully determined by the basic reproduction number, when the infection incidence rate has a suitable monotone property.

本文言語English
ページ(範囲)1163-1181
ページ数19
ジャーナルJournal of Difference Equations and Applications
18
7
DOI
出版ステータスPublished - 7月 2012

フィンガープリント

「Global dynamics of difference equations for SIR epidemic models with a class of nonlinear incidence rates」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル