Global dynamics of a delayed SIRS epidemic model with a wide class of nonlinear incidence rates

Yoichi Enatsu, Eleonora Messina, Yukihiko Nakata, Yoshiaki Muroya, Elvira Russo, Antonia Vecchio

研究成果: Article査読

9 被引用数 (Scopus)

抄録

In this paper, by constructing Lyapunov functionals, we consider the global dynamics of an SIRS epidemic model with a wide class of nonlinear incidence rates and distributed delays ∫ h 0 p(τ)f(S(t),I(t- τ))dτ under the condition that the total population converges to 1. By using a technical lemma which is derived from strong condition of strict monotonicity of functions f(S,I) and f(S,I)/I with respect to S≥0 and I>0, we extend the global stability result for an SIR epidemic model if R 0>1, where R 0 is the basic reproduction number. By using a limit system of the model, we also show that the disease-free equilibrium is globally asymptotically stable if R 0=1.

本文言語English
ページ(範囲)15-34
ページ数20
ジャーナルJournal of Applied Mathematics and Computing
39
1-2
DOI
出版ステータスPublished - 6月 2012

フィンガープリント

「Global dynamics of a delayed SIRS epidemic model with a wide class of nonlinear incidence rates」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル