TY - JOUR
T1 - Experimental evaluation of domain wall dynamics by Barkhausen noise analysis in Fe30Co70 magnetostrictive alloy wire
AU - Yamazaki, Takahiro
AU - Furuya, Yasubumi
AU - Nakao, Wataru
N1 - Publisher Copyright:
© 2018 Elsevier B.V.
PY - 2019/4/1
Y1 - 2019/4/1
N2 - Magnetic Barkhausen noise (MBN) plays significant roles to describe the dynamic of domain walls (DWs), but an in-depth understanding of the correlation between Barkhausen effect and magnetostrictive effect during magnetization process is still limited. In this study, we investigated MBN signals and the frequency spectra in a high-magnetostrictive Fe30Co70 alloy wire (λs = 102 ppm) by evaluating the stress effects on MBN profiles at the stress range of 0–150 MPa using tensile test machine. The results from MBN profiles revealed that MBN in the high magnetic field region was responsible for the localized changes of magnetic flux density, dB/dt induced by magnetic distortion related to non-180° DWs or the magnetization rotation. In MBN spectra, the peak shift towards lower frequencies with the increase of stress indicates that the rough pulse-like MBN outbreaks increase, and it results mainly from the increase of DW jumping length which is caused by the pinning effect at grain boundaries where DW energy is relatively high. In addition, stress dependence of the root mean square (RMS) value of MBN showed a good sensitivity (0.038 mV/MPa). Overall, these findings indicate that new MBN measurement system utilizing magnetostrictive materials can be helpful for a wide range of applications such as mechanical stress sensors and energy harvester systems.
AB - Magnetic Barkhausen noise (MBN) plays significant roles to describe the dynamic of domain walls (DWs), but an in-depth understanding of the correlation between Barkhausen effect and magnetostrictive effect during magnetization process is still limited. In this study, we investigated MBN signals and the frequency spectra in a high-magnetostrictive Fe30Co70 alloy wire (λs = 102 ppm) by evaluating the stress effects on MBN profiles at the stress range of 0–150 MPa using tensile test machine. The results from MBN profiles revealed that MBN in the high magnetic field region was responsible for the localized changes of magnetic flux density, dB/dt induced by magnetic distortion related to non-180° DWs or the magnetization rotation. In MBN spectra, the peak shift towards lower frequencies with the increase of stress indicates that the rough pulse-like MBN outbreaks increase, and it results mainly from the increase of DW jumping length which is caused by the pinning effect at grain boundaries where DW energy is relatively high. In addition, stress dependence of the root mean square (RMS) value of MBN showed a good sensitivity (0.038 mV/MPa). Overall, these findings indicate that new MBN measurement system utilizing magnetostrictive materials can be helpful for a wide range of applications such as mechanical stress sensors and energy harvester systems.
KW - Domain wall dynamics
KW - Frequency spectrum
KW - Magnetic Barkhausen noise
KW - Magnetostrictive materials
KW - Stress sensor
UR - http://www.scopus.com/inward/record.url?scp=85057440998&partnerID=8YFLogxK
U2 - 10.1016/j.jmmm.2018.11.011
DO - 10.1016/j.jmmm.2018.11.011
M3 - Article
AN - SCOPUS:85057440998
SN - 0304-8853
VL - 475
SP - 240
EP - 248
JO - Journal of Magnetism and Magnetic Materials
JF - Journal of Magnetism and Magnetic Materials
ER -