Enhancing V2X Communication: Machine Learning Assisted Dynamic mmWave Beam Search

Ryo Iwaki, Jin Nakazato, Kazuki Maruta, Manabu Tsukada, Hideya Ochiai, Hiroshi Esaki

研究成果: Conference contribution査読

抄録

This paper addresses the challenges of dynamic beam search in millimeter wave (mmWave) communications for vehicle-to-everything (V2X) applications. With the rapid mobility of connected autonomous vehicles (CAVs) and dense urban environments, maintaining high-quality mmWave con-nections is critical for the reliability and efficiency of V2X communications. We propose a novel machine learning-assisted framework for dynamic mmWave beam search, which signif-icantly enhances the adaptability and performance of V2X communication systems. Our approach leverages real-time environmental data and CAV dynamics to predict optimal beam directions, improving connection stability. Simulation results demonstrate the effectiveness of the proposed method in a real-world road scenario, offering a partial improvement over conventional beam search techniques.

本文言語English
ホスト出版物のタイトルICUFN 2024 - 15th International Conference on Ubiquitous and Future Networks
出版社IEEE Computer Society
ページ404-409
ページ数6
ISBN(電子版)9798350385298
DOI
出版ステータスPublished - 2024
イベント15th International Conference on Ubiquitous and Future Networks, ICUFN 2024 - Hybrid, Hungary, Hungary
継続期間: 2 7月 20245 7月 2024

出版物シリーズ

名前International Conference on Ubiquitous and Future Networks, ICUFN
ISSN(印刷版)2165-8528
ISSN(電子版)2165-8536

Conference

Conference15th International Conference on Ubiquitous and Future Networks, ICUFN 2024
国/地域Hungary
CityHybrid, Hungary
Period2/07/245/07/24

フィンガープリント

「Enhancing V2X Communication: Machine Learning Assisted Dynamic mmWave Beam Search」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル