抄録
The fuel-cell (FC) power system, utilizing biohydrogen from biomass resources, is a promising alternative to fossil fuels. However, hydrogen sulfide (H2S) in bio-syngas can severely degrade FC performance and increase environmental impact, necessitating impurity removal. This study investigates a multi-stage desulfurization process using neutralized sediment (NS) and a metal hydride (LaNi5) as H2S adsorbents. NS, a mining waste material, can potentially reduce environmental impact when repurposed as an adsorbent, with its performance influenced by pore configuration and Fe content. However, the purified gas does not fully meet FC fuel specifications. To address this, LaNi5, which selectively absorbs and releases hydrogen, was incorporated to achieve higher purification levels. In our study, H2S adsorption tests were conducted using two fixed-bed flow reactors heated to 250 °C, where a gas mixture containing 196 ppm of H2S flowed through the system. The proposed multi-stage system achieved a breakthrough time of 182.5 h with purified gas remaining under 0.1 ppm and an adsorption capacity of 16.4 g/g-sorbent. These results demonstrate the high desulfurization performance achieved using NS and LaNi₅.
本文言語 | English |
---|---|
論文番号 | 1000 |
ジャーナル | Energies |
巻 | 18 |
号 | 4 |
DOI | |
出版ステータス | Published - 2月 2025 |