Document recommendation using data compression

Takafumi Suzuki, Shin Hasegawa, Takayuki Hamamoto, Akiko Aizawa

研究成果: Conference article査読

2 被引用数 (Scopus)

抄録

We propose a new method of content-based document recommendation using data compression. Though previous studies mainly used bags-of-words to calculate the similarity between the profile and target documents, users in fact focus on larger unit than words, when searching information from documents. In order to take this point into consideration, we propose a method of document recommendation using data compression. Experimental results using Japanese newspaper corpora showed that (a) data compression performed better than the bag-of-words method, especially when the number of topics was large; (b) our new method outperformed the previous data compression method; (c) a combination of data compression and bag-of-words can also improve performance. We conclude that our method better captures users' profiles and thus contributes to making a better document recommendation system.

本文言語English
ページ(範囲)150-159
ページ数10
ジャーナルProcedia - Social and Behavioral Sciences
27
DOI
出版ステータスPublished - 2011
イベントConference on Pacific Association for Computational Linguistics, PACLING 2011 - Kuala Lumpur, Malaysia
継続期間: 19 7月 201121 7月 2011

フィンガープリント

「Document recommendation using data compression」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル