TY - GEN
T1 - Development and performance evaluation of parallel link type human ankle rehabilitation assistive device
AU - Yonezawa, Teru
AU - Nomura, Kenta
AU - Onodera, Takayuki
AU - Ding, Ming
AU - Mizoguchi, Hiroshi
AU - Takemura, Hiroshi
PY - 2014/4/20
Y1 - 2014/4/20
N2 - This paper presents a novel rehabilitation assistive device called a 'parallel link type human ankle rehabilitation assistive device (PHARAD).' It can accurately measure foot motions in six degrees of freedom and reproduce the ankle joint motions. By reproducing the input motions of the ankle joint, PHARAD conducts passive exercises for ankle rehabilitation. To measure and reproduce complex foot motions, we adopted a parallel link mechanism using six pneumatic cylinders with displacement sensors. In this research, we define the motions of a foot plate attached to a foot sole as the foot motions. A posture of the foot plate, i.e., the three-dimensional (3D) position (x, y, z) and rotation angle (θ, ψ), is numerically calculated by solving the forward kinematics of the PHARAD. We conducted two kinds of experiments to evaluate the performance of the PHARAD. First, verification experiments for the accuracy were implemented by comparing the measured motions of the foot plate by the PHARAD with those obtained by a motion capture system. The experimental results showed that the maximum root mean square error (RMSE) values of the 3D position and rotation angle were 2.6 mm and 1.5°, respectively. Then, verification experiments for the reproducibility were implemented by comparing the reproduced motions with the input motions. The experimental results showed that the RMSE values of the 3D position and rotation angle were 5.6 mm and 6.1°, respectively. Moreover, after reproducing the input motions ten times, the standard deviations of the 3D position and rotation angle were 1.4 mm and 0.7°, respectively. These experimental results show that the PHARAD can precisely measure and reproduce complex ankle motions, and has the potential to reproduce the exercise therapy presented by physical therapists.
AB - This paper presents a novel rehabilitation assistive device called a 'parallel link type human ankle rehabilitation assistive device (PHARAD).' It can accurately measure foot motions in six degrees of freedom and reproduce the ankle joint motions. By reproducing the input motions of the ankle joint, PHARAD conducts passive exercises for ankle rehabilitation. To measure and reproduce complex foot motions, we adopted a parallel link mechanism using six pneumatic cylinders with displacement sensors. In this research, we define the motions of a foot plate attached to a foot sole as the foot motions. A posture of the foot plate, i.e., the three-dimensional (3D) position (x, y, z) and rotation angle (θ, ψ), is numerically calculated by solving the forward kinematics of the PHARAD. We conducted two kinds of experiments to evaluate the performance of the PHARAD. First, verification experiments for the accuracy were implemented by comparing the measured motions of the foot plate by the PHARAD with those obtained by a motion capture system. The experimental results showed that the maximum root mean square error (RMSE) values of the 3D position and rotation angle were 2.6 mm and 1.5°, respectively. Then, verification experiments for the reproducibility were implemented by comparing the reproduced motions with the input motions. The experimental results showed that the RMSE values of the 3D position and rotation angle were 5.6 mm and 6.1°, respectively. Moreover, after reproducing the input motions ten times, the standard deviations of the 3D position and rotation angle were 1.4 mm and 0.7°, respectively. These experimental results show that the PHARAD can precisely measure and reproduce complex ankle motions, and has the potential to reproduce the exercise therapy presented by physical therapists.
UR - https://www.scopus.com/pages/publications/84953331324
U2 - 10.1109/ROBIO.2014.7090430
DO - 10.1109/ROBIO.2014.7090430
M3 - Conference contribution
AN - SCOPUS:84953331324
T3 - 2014 IEEE International Conference on Robotics and Biomimetics, IEEE ROBIO 2014
SP - 802
EP - 807
BT - 2014 IEEE International Conference on Robotics and Biomimetics, IEEE ROBIO 2014
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2014 IEEE International Conference on Robotics and Biomimetics, IEEE ROBIO 2014
Y2 - 5 December 2014 through 10 December 2014
ER -