Deep-Learning Approach for Revealing Latent Behaviors in Mice: Development of Walking Trajectories Prediction Model and Applications

Haruki Oikawa, Yoshito Tsuruda, Yoshitake Sano, Teiichi Furuichi, Masataka Yamamoto, Hiroshi Takemura

研究成果: Conference contribution査読

1 被引用数 (Scopus)

抄録

In neuroscience research, in vivo imaging techniques for mice are used to observe brain activity and link it to their behavior. Brain activity can often only be associated with observed behavioral outcomes. In other words, it is difficult to speculate on unmanifested behavior due to factors such as 'hesitation' in humans. When a prediction model can predict mice behavior, if brain activity is observed in a specific brain region during incorrect predictions, that would be strong evidence of unmanifest behavior. In this study, we developed a trajectory prediction model to predict the walking trajectory of mice as a prelude to the behavior prediction model. The prediction model was applied to the behavioral analysis of mice administered an anxiolytic drug (diazepam) or saline, revealing significantly different outcomes.

本文言語English
ホスト出版物のタイトル2023 IEEE International Conference on Systems, Man, and Cybernetics
ホスト出版物のサブタイトルImproving the Quality of Life, SMC 2023 - Proceedings
出版社Institute of Electrical and Electronics Engineers Inc.
ページ5114-5119
ページ数6
ISBN(電子版)9798350337020
DOI
出版ステータスPublished - 2023
イベント2023 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2023 - Hybrid, Honolulu, United States
継続期間: 1 10月 20234 10月 2023

出版物シリーズ

名前Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics
ISSN(印刷版)1062-922X

Conference

Conference2023 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2023
国/地域United States
CityHybrid, Honolulu
Period1/10/234/10/23

フィンガープリント

「Deep-Learning Approach for Revealing Latent Behaviors in Mice: Development of Walking Trajectories Prediction Model and Applications」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル