COUNTEREXAMPLES TO THE LOCAL-GLOBAL PRINCIPLE FOR NON-SINGULAR PLANE CURVES AND A CUBIC ANALOGUE OF ANKENY-ARTIN-CHOWLA-MORDELL CONJECTURE

Yoshinosuke Hirakawa, Yosuke Shimizu

研究成果: Article査読

抄録

In this article, we introduce a systematic and uniform construction of non-singular plane curves of odd degrees n ≥ 5 which violate the localglobal principle. Our construction works unconditionally for n divisible by p2 for some odd prime number p. Moreover, our construction also works for n divisible by some p ≥ 5 which satisfies a conjecture on a p-adic property of the fundamental unit of Q(p1/3) and Q((2p)1/3). This conjecture is a natural cubic analogue of the classical Ankeny-Artin-Chowla-Mordell conjecture for Q(p1/2) and easily verified numerically.

本文言語English
ページ(範囲)1821-1835
ページ数15
ジャーナルProceedings of the American Mathematical Society
150
5
DOI
出版ステータスPublished - 2022

フィンガープリント

「COUNTEREXAMPLES TO THE LOCAL-GLOBAL PRINCIPLE FOR NON-SINGULAR PLANE CURVES AND A CUBIC ANALOGUE OF ANKENY-ARTIN-CHOWLA-MORDELL CONJECTURE」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル