TY - JOUR
T1 - Chirality luminescent properties of single-walled carbon nanotubes during redox reactions
AU - Matsukawa, Yuji
AU - Umemura, Kazuo
N1 - Funding Information:
This work was supported by JST SICORP Grant Number JPMJSC19E1, Japan.
Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2021/2
Y1 - 2021/2
N2 - The optical measurement of single-walled carbon nanotubes (SWNTs) is a useful approach for understanding chirality characteristics because the excitation and emission wavelengths that produce the maximum emission intensity are unique to the chirality of SWNTs. The emission properties of SWNT chirality are useful in various biological applications and are envisaged to be applicable in nanobiosensors. Therefore, it is necessary to detect even small environmental changes, such as redox reactions, and it is important to identify optimal chirality according to the applications. In this study, we focused on the presence of SWNTs with different chiralities within the same SWNT powder, and we investigated the correlation between the rate of change of the emission intensity due to redox reactions and SWNT chirality. We measured the redox change rate of chirality, which was difficult to detect because of the low emission intensity, by increasing the exposure time during photoluminescence (PL) measurement. 0.5 mg of SWNT powder and 1 mL of double-stranded DNA (dsDNA) stock solution were mixed and sonicated using a probe-type sonicator on ice. The supernatant of the prepared dsDNA-SWNT dispersion was stored after centrifugation. Hydrogen peroxide (H2O2; final concentration: 0.03%) was added to this dispersion for oxidation, and then, a catechin aqueous solution (final concentration 1.5 μg/mL) was added to the solution to measure PL. The exposure time was 90 s to obtain sufficient emission intensity. The measurement results showed that the magnitude of the rate of change of the PL intensity due to redox reaction was different for each chirality. Focusing on the (8,6) and (9,4) chiralities, which showed a large rate of change, the PL intensity decreased by 57.4% and 54.6% from the initial state, respectively, when H2O2 was added. Subsequently, these values increased by 1024% and 558% with the addition of a catechin aqueous solution, respectively. Furthermore, from the comparison of the PL detection results and optical response characteristics of each chirality, it was observed that the rate of change of the PL intensity of SWNTs during redox reactions using H2O2 and catechin had the strongest correlation with the SWNT diameter.
AB - The optical measurement of single-walled carbon nanotubes (SWNTs) is a useful approach for understanding chirality characteristics because the excitation and emission wavelengths that produce the maximum emission intensity are unique to the chirality of SWNTs. The emission properties of SWNT chirality are useful in various biological applications and are envisaged to be applicable in nanobiosensors. Therefore, it is necessary to detect even small environmental changes, such as redox reactions, and it is important to identify optimal chirality according to the applications. In this study, we focused on the presence of SWNTs with different chiralities within the same SWNT powder, and we investigated the correlation between the rate of change of the emission intensity due to redox reactions and SWNT chirality. We measured the redox change rate of chirality, which was difficult to detect because of the low emission intensity, by increasing the exposure time during photoluminescence (PL) measurement. 0.5 mg of SWNT powder and 1 mL of double-stranded DNA (dsDNA) stock solution were mixed and sonicated using a probe-type sonicator on ice. The supernatant of the prepared dsDNA-SWNT dispersion was stored after centrifugation. Hydrogen peroxide (H2O2; final concentration: 0.03%) was added to this dispersion for oxidation, and then, a catechin aqueous solution (final concentration 1.5 μg/mL) was added to the solution to measure PL. The exposure time was 90 s to obtain sufficient emission intensity. The measurement results showed that the magnitude of the rate of change of the PL intensity due to redox reaction was different for each chirality. Focusing on the (8,6) and (9,4) chiralities, which showed a large rate of change, the PL intensity decreased by 57.4% and 54.6% from the initial state, respectively, when H2O2 was added. Subsequently, these values increased by 1024% and 558% with the addition of a catechin aqueous solution, respectively. Furthermore, from the comparison of the PL detection results and optical response characteristics of each chirality, it was observed that the rate of change of the PL intensity of SWNTs during redox reactions using H2O2 and catechin had the strongest correlation with the SWNT diameter.
KW - Carbon nanotube
KW - Chirality
KW - DNA
KW - Exposure time
KW - Photoluminescence
KW - Redox
UR - http://www.scopus.com/inward/record.url?scp=85097741244&partnerID=8YFLogxK
U2 - 10.1016/j.optmat.2020.110748
DO - 10.1016/j.optmat.2020.110748
M3 - Article
AN - SCOPUS:85097741244
VL - 112
JO - Optical Materials
JF - Optical Materials
SN - 0925-3467
M1 - 110748
ER -