Asymptotic expansion of solutions to the wave equation with space-dependent damping

Motohiro Sobajima, Yuta Wakasugi

研究成果: Article査読

1 被引用数 (Scopus)

抄録

We study the large time behavior of solutions to the wave equation with space-dependent damping in an exterior domain. We show that if the damping is effective, then the solution is asymptotically expanded in terms of solutions of corresponding parabolic equations. The main idea to obtain the asymptotic expansion is the decomposition of the solution of the damped wave equation into the solution of the corresponding parabolic problem and the time derivative of the solution of the damped wave equation with certain inhomogeneous term and initial data. The estimate of the remainder term is an application of weighted energy methods with suitable supersolutions of the corresponding parabolic problem.

本文言語English
ページ(範囲)241-279
ページ数39
ジャーナルAsymptotic Analysis
134
1-2
DOI
出版ステータスPublished - 2023

フィンガープリント

「Asymptotic expansion of solutions to the wave equation with space-dependent damping」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル