Analysis of the High-Frequency Magnetization Process Through Machine Learning and Topological Data Techniques

Alexandre Lira Foggiatto, Ryunosuke Nagaoka, Michiki Taniwaki, Takahiro Yamazaki, Takeshi Ogasawara, Ippei Obayashi, Yasuaki Hiraoka, Chiharu Mitsumata, Masato Kotsugi

研究成果: Conference contribution査読

抄録

The study of the high-frequency magnetization process is crucial for advancing technologies like electric vehicles and 6G communication systems. We employ Topological Data Analysis (TDA) and machine learning to explore the magnetization process in materials at frequencies up to 100 KHz. Our approach involves analyzing the microstructures affecting magnetization dynamics, aiming to enhance power device efficiency. Utilizing a high-resolution magneto-optical Kerr effect (MOKE) microscope, we visualize magnetic domains at varying frequencies. Persistent homology, a TDA method, is used to convert topological features into vectors, which are then processed using Principal Component Analysis (PCA) to capture the significant information. This study also addresses the challenge of machine learning explainability in material science, correlating algorithm outputs with physical phenomena.

本文言語English
ホスト出版物のタイトル2024 IEEE International Magnetic Conference - Short Papers, INTERMAG Short Papers 2024 - Proceedings
出版社Institute of Electrical and Electronics Engineers Inc.
ISBN(電子版)9798350362213
DOI
出版ステータスPublished - 2024
イベント2024 IEEE International Magnetic Conference - Short Papers, INTERMAG Short Papers 2024 - Rio de Janeiro, Brazil
継続期間: 5 5月 202410 5月 2024

出版物シリーズ

名前2024 IEEE International Magnetic Conference - Short Papers, INTERMAG Short Papers 2024 - Proceedings

Conference

Conference2024 IEEE International Magnetic Conference - Short Papers, INTERMAG Short Papers 2024
国/地域Brazil
CityRio de Janeiro
Period5/05/2410/05/24

フィンガープリント

「Analysis of the High-Frequency Magnetization Process Through Machine Learning and Topological Data Techniques」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル