A priori estimates for the general dynamic Euler–Bernoulli beam equation: Supported and cantilever beams

Alemdar Hasanov, Hiromichi Itou

研究成果: Article査読

4 被引用数 (Scopus)

抄録

This work is a further development of weak solution theory for the general Euler–Bernoulli beam equation ρ(x)utt+μ(x)ut+r(x)uxx xx−(Tr(x)ux)x=F(x,t) defined in the finite dimension domain ΩT≔(0,l)×(0,T)⊂R2, based on the energy method. Here r(x)=EI(x), E>0 is the elasticity modulus and I(x)>0 is the moment of inertia of the cross-section, ρ(x)>0 is the mass density of the beam, μ(x)>0 is the damping coefficient and Tr(x)≥0 is the traction force along the beam. Two benchmark initial boundary value problems with mixed boundary conditions, corresponding to supported and cantilever beams, are analyzed. For the weak and regular weak solutions of these problems a priori estimates are derived under the minimal conditions. These estimates in particular imply the uniqueness of the solutions of both problems.

本文言語English
ページ(範囲)141-146
ページ数6
ジャーナルApplied Mathematics Letters
87
DOI
出版ステータスPublished - 1 2019

フィンガープリント 「A priori estimates for the general dynamic Euler–Bernoulli beam equation: Supported and cantilever beams」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル