A note on the Diophantine equations 2ln2=1+q+⋯+qα and application to odd perfect numbers

Yoshinosuke Hirakawa

研究成果: Article査読

抄録

Let N be an odd perfect number. Then, Euler proved that there exist some integers n,α and a prime q such that N=n2qα, q∤n, and q≡α≡1mod4. In this note, we prove that the ratio [Formula presented] is neither a square nor a square times a single prime unless α=1. It is a direct consequence of a certain property of the Diophantine equation 2ln2=1+q+⋯+qα, where l denotes one or a prime, and its proof is based on the prime ideal factorization in the quadratic orders Z[1−q] and the primitive solutions of generalized Fermat equations xβ+yβ=2z2. We give also a slight generalization to odd multiply perfect numbers.

本文言語English
ページ(範囲)282-287
ページ数6
ジャーナルIndagationes Mathematicae
35
2
DOI
出版ステータスPublished - 3月 2024

フィンガープリント

「A note on the Diophantine equations 2ln2=1+q+⋯+qα and application to odd perfect numbers」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル