TY - JOUR
T1 - Well-ordered molecular heterojunction of epitaxial C60 on single-crystal dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT)
AU - Nakayama, Yasuo
AU - Ito, Kosei
AU - Takeuchi, Riku
AU - Tsuruta, Ryohei
AU - Yamauchi, Kaname
AU - Izawa, Seiichiro
AU - Hiramoto, Masahiro
AU - Kumara, Rosantha
AU - Koganezawa, Tomoyuki
N1 - Publisher Copyright:
© 2023 The Japan Society of Applied Physics
PY - 2023/10/1
Y1 - 2023/10/1
N2 - A well-ordered molecular arrangement is a necessary condition for “band transport” in molecular semiconductor materials, and thus it is important for donor-acceptor molecular junctions for applications in advanced organic optoelectronic devices. In this study, the heteroepitaxial growth of an acceptor material C60 on a single-crystal (001) surface of dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT), a representative high-mobility donor material, is demonstrated. Surface X-ray diffraction analysis indicated spontaneous alignment of the nearest-neighbor molecular direction of the C60 crystallites uniquely to the a -axis of the DNTT.
AB - A well-ordered molecular arrangement is a necessary condition for “band transport” in molecular semiconductor materials, and thus it is important for donor-acceptor molecular junctions for applications in advanced organic optoelectronic devices. In this study, the heteroepitaxial growth of an acceptor material C60 on a single-crystal (001) surface of dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene (DNTT), a representative high-mobility donor material, is demonstrated. Surface X-ray diffraction analysis indicated spontaneous alignment of the nearest-neighbor molecular direction of the C60 crystallites uniquely to the a -axis of the DNTT.
KW - grazing-incidence x-ray diffraction
KW - molecular beam epitaxy
KW - organic semiconductor
KW - p-n junction
UR - http://www.scopus.com/inward/record.url?scp=85176249661&partnerID=8YFLogxK
U2 - 10.35848/1882-0786/ad0021
DO - 10.35848/1882-0786/ad0021
M3 - Article
AN - SCOPUS:85176249661
SN - 1882-0778
VL - 16
JO - Applied Physics Express
JF - Applied Physics Express
IS - 10
M1 - 101001
ER -