Abstract
This paper investigates foliation structures of configuration manifolds and develops integrating algorithms for a class of constraints that contain the time variable, called A-rheonomous affine constrains. We first present some preliminaries on the A-rheonomous affine constrains. Next, theoretical analysis on foliation structures of configuration manifolds is done for the respective three cases where the A-rheonomous affine constrains are completely integrable, partially integrable, and completely nonintegrable. We then propose two types of integrating algorithms in order to calculate independent first integrals for completely integrable and partially integrable A-rheonomous affine constrains. Finally, a physical example is illustrated in order to verify the availability of our new results.
| Original language | English |
|---|---|
| Article number | 345942 |
| Journal | Mathematical Problems in Engineering |
| Volume | 2012 |
| DOIs | |
| Publication status | Published - 2012 |