Structural Investigation of Quaternary Layered Oxides upon Na-Ion Deinsertion

Angelo Mullaliu, Angelo Mullaliu, Kazutoshi Kuroki, Marlou Keller, Marlou Keller, Kei Kubota, Daniel Buchholz, Daniel Buchholz, Shinichi Komaba, Stefano Passerini, Stefano Passerini

Research output: Contribution to journalArticle

Abstract

Na-ion batteries are emerging alternatives to Li-ion chemistries for large-scale energy storage applications. Quaternary layered oxide Na0.76Mn0.5Ni0.3Fe0.1Mg0.1O2 offers outstanding electrochemical performance in Na-ion batteries compared to pure-phase layered oxides because of the synergistic effect of the P/O-phase mixing. The material is indeed constituted by a mixture of P3, P2, and O3 phases, and a newly identified Na-free phase, i.e., nickel magnesium oxide phase, which improves heat removal and enhances the electrochemical performance. Herein, we structurally investigate, through synchrotron-radiation X-ray diffraction, the modifications occurring after full desodiation, detailing the material structural rearrangement upon Na removal and revealing the effect of two different charging protocols, i.e., constant current (CC) and constant current-constant voltage (CCCV). While the Na-free phase is electrochemically inactive, likely helping in homogenization of the thermal gradient in the electrode during cycling, O-P intergrown phases appear during the extraction of Na ions from interslab layers, and they are dependent on the desodiation level. The application of a constant voltage step at the end of the galvanostatic charge is responsible for a shortening of the interslab distance and a significant volume contraction (-11.9%).

Original languageEnglish
Pages (from-to)7408-7414
Number of pages7
JournalInorganic Chemistry
Volume59
Issue number11
DOIs
Publication statusPublished - 1 Jun 2020

Fingerprint Dive into the research topics of 'Structural Investigation of Quaternary Layered Oxides upon Na-Ion Deinsertion'. Together they form a unique fingerprint.

  • Cite this

    Mullaliu, A., Mullaliu, A., Kuroki, K., Keller, M., Keller, M., Kubota, K., Buchholz, D., Buchholz, D., Komaba, S., Passerini, S., & Passerini, S. (2020). Structural Investigation of Quaternary Layered Oxides upon Na-Ion Deinsertion. Inorganic Chemistry, 59(11), 7408-7414. https://doi.org/10.1021/acs.inorgchem.9b03727