TY - GEN
T1 - Spectral analysis and discussion on the velocity fluctuation in drag reducing channel flow by surfactant additives
AU - Kaiho, Yuichi
AU - Hara, Shumpei
AU - Tsukahara, Takahiro
AU - Kawaguchi, Yasuo
N1 - Publisher Copyright:
Copyright © 2016 by ASME.
PY - 2016
Y1 - 2016
N2 - It is known as the Toms effect that the wall friction coefficient is reduced by adding a small amount of polymer or surfactant into a water flow. In the drag-reducing flow, it is expected that a time scale of turbulent velocity fluctuation is changed by relaxation time due to viscoelasticity. In the present study, experimental analysis of the turbulent velocity fluctuation was performed with temporal characteristics in surfactant solution flow. The velocity fluctuations were measured by using a two-component laser Doppler velocimeter system on turbulent channel flow. And then, we performed statistical operation on those data and examined the time scale. From spectra analysis, it was found that very low frequency velocity fluctuations existed near the wall region in the surfactant solution flow. It was also revealed that the strong anisotropy occurred not only with the intensity but also with frequency distribution in turbulent velocity fluctuations. Moreover, the turbulence contributes nothing to the Reynolds shear stress and behaves as a wave motion. It was concluded that the turbulent eddies and viscoelasticity were two factors contributing to turbulent generation in the viscoelastic turbulent flow, with each factor having its own time scale.
AB - It is known as the Toms effect that the wall friction coefficient is reduced by adding a small amount of polymer or surfactant into a water flow. In the drag-reducing flow, it is expected that a time scale of turbulent velocity fluctuation is changed by relaxation time due to viscoelasticity. In the present study, experimental analysis of the turbulent velocity fluctuation was performed with temporal characteristics in surfactant solution flow. The velocity fluctuations were measured by using a two-component laser Doppler velocimeter system on turbulent channel flow. And then, we performed statistical operation on those data and examined the time scale. From spectra analysis, it was found that very low frequency velocity fluctuations existed near the wall region in the surfactant solution flow. It was also revealed that the strong anisotropy occurred not only with the intensity but also with frequency distribution in turbulent velocity fluctuations. Moreover, the turbulence contributes nothing to the Reynolds shear stress and behaves as a wave motion. It was concluded that the turbulent eddies and viscoelasticity were two factors contributing to turbulent generation in the viscoelastic turbulent flow, with each factor having its own time scale.
KW - Drag reduction
KW - Laser doppler velocimeter
KW - Surfactant solution flow
KW - Turbulent flow
KW - Viscoelastic fluid
UR - http://www.scopus.com/inward/record.url?scp=85022059486&partnerID=8YFLogxK
U2 - 10.1115/FEDSM2016-7725
DO - 10.1115/FEDSM2016-7725
M3 - Conference contribution
AN - SCOPUS:85022059486
T3 - American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM
BT - Symposia
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2016 Fluids Engineering Division Summer Meeting, FEDSM 2016, collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels
Y2 - 10 July 2016 through 14 July 2016
ER -