Abstract
Type 2 diabetes is a progressive disorder denoted by hyperglycemia and impaired insulin secretion. Although a decrease in β-cell function and mass is a well-known trigger for diabetes, the comprehensive mechanism is still unidentified. Here, we performed single-cell RNA sequencing of pancreatic islets from prediabetic and diabetic db/db mice, an animal model of type 2 diabetes. We discovered a diabetes-specific transcriptome landscape of endocrine and nonendocrine cell types with subpopulations of β-and α-cells. We recognized a new prediabetic gene, Anxa10, that was induced by and regulated Ca2+ influx from metabolic stresses. Anxa10-overexpressed β-cells displayed suppression of glucose-stimulated intra-cellular Ca2+ elevation and potassium-induced insulin secretion. Pseudotime analysis of β-cells predicted that this Ca2+-surge responder cluster would proceed to mitochondria dysfunction and endoplasmic reticulum stress. Other trajectories comprised dedifferentiation and transdifferentiation, emphasizing acinar-like cells in diabetic islets. Altogether, our data provide a new insight into Ca2+ allostasis and β-cell failure processes.
Original language | English |
---|---|
Pages (from-to) | 75-92 |
Number of pages | 18 |
Journal | Diabetes |
Volume | 73 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 2024 |