Possible light-induced superconductivity in a strongly correlated electron system

Nikolaj Bittner, Takami Tohyama, Stefan Kaiser, Dirk Manske

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)


Using a nonequilibrium implementation of the Lanczos-based exact diagonalisation technique we study the possibility of the light-induced superconducting phase coherence in a solid state system after an ultrafast optical excitation. In particular, we investigate the buildup of superconducting correlations by calculating an exact time-dependent wave function reflecting the properties of the system in non-equilibrium and the corresponding transient response functions. Within our picture we identify a possible transient Meissner effect after dynamical quenching of the non-superconducting wavefunction and extract a characteristic superfluid density that we compare to experimental data. Finally, we find that the stability of the induced superconducting state depends crucially on the nature of the excitation quench: namely, a pure interaction quench induces a long-lived superconducting state, whereas a phase quench leads to a short-lived transient superconductor.

Original languageEnglish
Article number044704
Journaljournal of the physical society of japan
Issue number4
Publication statusPublished - 2019


Dive into the research topics of 'Possible light-induced superconductivity in a strongly correlated electron system'. Together they form a unique fingerprint.

Cite this