On the maximal Lp-Lq regularity for a compressible fluid model of Korteweg type on general domains

Hirokazu Saito

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

The aim of this paper is to show the maximal Lp-Lq regularity for a compressible fluid model of Korteweg type on general domains of the N-dimensional Euclidean space for N≥2 (e.g. bounded domains; exterior domains; half-spaces, layers, tubes, and their perturbed domains). Our approach is based on the theory of the R-boundedness for a generalized resolvent problem associated with the Korteweg-type model.

Original languageEnglish
Pages (from-to)2802-2851
Number of pages50
JournalJournal of Differential Equations
Volume268
Issue number6
DOIs
Publication statusPublished - 5 Mar 2020

Keywords

  • Analytic semigroups
  • Compressible viscous fluids
  • General domains
  • Korteweg model
  • Maximal regularity
  • R-bounded solution operator families

Fingerprint Dive into the research topics of 'On the maximal L<sub>p</sub>-L<sub>q</sub> regularity for a compressible fluid model of Korteweg type on general domains'. Together they form a unique fingerprint.

Cite this