Novel method to classify hemodynamic response obtained using multi-channel fNIRS measurements into two groups: Exploring the combinations of channels

Hiroko Ichikawa, Jun Kitazono, Kenji Nagata, Akira Manda, Keiichi Shimamura, Ryoichi Sakuta, Masato Okada, Masami K. Yamaguchi, So Kanazawa, Ryusuke Kakigi

Research output: Contribution to journalArticlepeer-review

38 Citations (Scopus)

Abstract

Near-infrared spectroscopy (NIRS) in psychiatric studies has widely demonstrated that cerebral hemodynamics differs among psychiatric patients. Recently we found that children with attention-deficit/hyperactivity disorder (ADHD) and children with autism spectrum disorders (ASD) showed different hemodynamic responses to their own mother's face. Based on this finding, we may be able to classify the hemodynamic data into two those groups and predict to which diagnostic group an unknown participant belongs. In the present study, we proposed a novel statistical method for classifying the hemodynamic data of these two groups. By applying a support vector machine (SVM), we searched the combination of measurement channels at which the hemodynamic response differed between the ADHD and the ASD children. The SVM found the optimal subset of channels in each data set and successfully classified the ADHD data from the ASD data. For the 24-dimensional hemodynamic data, two optimal subsets classified the hemodynamic data with 84% classification accuracy, while the subset contained all 24 channels classified with 62% classification accuracy. These results indicate the potential application of our novel method for classifying the hemodynamic data into two groups and revealing the combinations of channels that efficiently differentiate the two groups.

Original languageEnglish
Article number480
JournalFrontiers in Human Neuroscience
Volume8
Issue numberJULY
DOIs
Publication statusPublished - 2 Jul 2014

Keywords

  • Attention-deficit/hyperactivity disorder (ADHD)
  • Autism spectrum disorders (ASD)
  • Hemodynamic data
  • Near-infrared spectroscopy (NIRS)
  • Sparse modeling
  • Support vector machine (SVM)

Fingerprint

Dive into the research topics of 'Novel method to classify hemodynamic response obtained using multi-channel fNIRS measurements into two groups: Exploring the combinations of channels'. Together they form a unique fingerprint.

Cite this