Near infrared fluorescent nanostructure design for organic/inorganic hybrid system

Research output: Contribution to journalReview articlepeer-review

6 Citations (Scopus)

Abstract

Near infrared (NIR) light offers high transparency in biological tissue. Recent advances in NIR fluorophores including organic dyes and lanthanide-doped inorganic nanoparticles have realized the effective use of the NIR optical window for in vivo bioimaging and photodynamic therapy. The narrow energy level intervals used for electronic transition that involves NIR light, however, give rise to a need for guidelines for reducing heat emission in luminescence systems, especially in the development of organic/inorganic hybrid structures. This review presents an approach for employing the polarity and vibrational energy of ions and molecules that surround the luminescence centers for the development of such hybrid nanostructures. Multiphonon relaxation theory, formulated for dealing with heat release in ionic solids, is applied to describe the vibrational energy in organic or molecular systems, referred to as phonon in this review, and we conclude that surrounding the luminescence centers either with ions with low vibrational energy or molecules with small chemical polarity is the key to bright luminescence. NIR photoexcited phosphors and nanostructures in organic/inorganic mixed systems, designed based on the guidelines, for photodynamic therapy are reviewed.

Original languageEnglish
Article number1583
JournalBiomedicines
Volume9
Issue number11
DOIs
Publication statusPublished - Nov 2021

Keywords

  • Bioimaging
  • Fluorescence
  • Hybrid nanostructure
  • Nanoparticles
  • Near infrared light
  • Phonon engineering
  • Polarity

Fingerprint

Dive into the research topics of 'Near infrared fluorescent nanostructure design for organic/inorganic hybrid system'. Together they form a unique fingerprint.

Cite this