TY - JOUR
T1 - Micropatterned co-culture of hepatocyte spheroids layered on non-parenchymal cells to understand heterotypic cellular interactions
AU - Otsuka, Hidenori
AU - Sasaki, Kohei
AU - Okimura, Saya
AU - Nagamura, Masako
AU - Nakasone, Yuichi
PY - 2013/12
Y1 - 2013/12
N2 - Microfabrication and micropatterning techniques in tissue engineering offer great potential for creating and controlling cellular microenvironments including cell-matrix interactions, soluble stimuli and cell-cell interactions. Here, we present a novel approach to generate layered patterning of hepatocyte spheroids on micropatterned non-parenchymal feeder cells using microfabricated poly(ethylene glycol) (PEG) hydrogels. Micropatterned PEG-hydrogel-treated substrates with two-dimensional arrays of gelatin circular domains (φ = 100 μm) were prepared by photolithographic method. Only on the critical structure of PEG hydrogel with perfect protein rejection, hepatocytes were co-cultured with non-parenchymal cells to be led to enhanced hepatocyte functions. Then, we investigated the mechanism of the functional enhancement in co-culture with respect to the contributions of soluble factors and direct cell-cell interactions. In particular, to elucidate the influence of soluble factors on hepatocyte function, hepatocyte spheroids underlaid with fibroblasts (NIH/3T3 mouse fibroblasts) or endothelial cells (BAECs: bovine aortic endothelial cells) were compared with physically separated co-culture of hepatocyte monospheroids with NIH3T3 or BAEC using trans-well culture systems. Our results suggested that direct heterotypic cell-to-cell contact and soluble factors, both of these between hepatocytes and fibroblasts, significantly enhanced hepatocyte functions. In contrast, direct heterotypic cell-to-cell contact between hepatocytes and endothelial cells only contributed to enhance hepatocyte functions. This patterning technique can be a useful experimental tool for applications in basic science, drug screening and tissue engineering, as well as in the design of artificial liver devices.
AB - Microfabrication and micropatterning techniques in tissue engineering offer great potential for creating and controlling cellular microenvironments including cell-matrix interactions, soluble stimuli and cell-cell interactions. Here, we present a novel approach to generate layered patterning of hepatocyte spheroids on micropatterned non-parenchymal feeder cells using microfabricated poly(ethylene glycol) (PEG) hydrogels. Micropatterned PEG-hydrogel-treated substrates with two-dimensional arrays of gelatin circular domains (φ = 100 μm) were prepared by photolithographic method. Only on the critical structure of PEG hydrogel with perfect protein rejection, hepatocytes were co-cultured with non-parenchymal cells to be led to enhanced hepatocyte functions. Then, we investigated the mechanism of the functional enhancement in co-culture with respect to the contributions of soluble factors and direct cell-cell interactions. In particular, to elucidate the influence of soluble factors on hepatocyte function, hepatocyte spheroids underlaid with fibroblasts (NIH/3T3 mouse fibroblasts) or endothelial cells (BAECs: bovine aortic endothelial cells) were compared with physically separated co-culture of hepatocyte monospheroids with NIH3T3 or BAEC using trans-well culture systems. Our results suggested that direct heterotypic cell-to-cell contact and soluble factors, both of these between hepatocytes and fibroblasts, significantly enhanced hepatocyte functions. In contrast, direct heterotypic cell-to-cell contact between hepatocytes and endothelial cells only contributed to enhance hepatocyte functions. This patterning technique can be a useful experimental tool for applications in basic science, drug screening and tissue engineering, as well as in the design of artificial liver devices.
KW - cell-cell interactions
KW - co-culture
KW - micropatterning
KW - primary hepatocyte
KW - spheroid
UR - http://www.scopus.com/inward/record.url?scp=84889042322&partnerID=8YFLogxK
U2 - 10.1088/1468-6996/14/6/065003
DO - 10.1088/1468-6996/14/6/065003
M3 - Article
AN - SCOPUS:84889042322
SN - 1468-6996
VL - 14
JO - Science and Technology of Advanced Materials
JF - Science and Technology of Advanced Materials
IS - 6
M1 - 065003
ER -