Abstract
In this study, micro-scale numerical simulations were performed to evaluate the residual strength of carbon fiber-reinforced polymers (CFRPs) subjected to cyclic transverse and out-of-plane shear loading fatigue. The simulations utilized a finite element method, incorporating an entropy-based damage criterion for the matrix resin. This method aimed to link entropy generation to strength degradation, with the parameter (Formula presented.) determined as a function of entropy. Cyclic tensile and shear analyses were conducted to correlate residual strength with entropy accumulation, establishing a linear relationship for (Formula presented.). The results demonstrated meso-scale strength degradation based on micro-scale numerical simulations. Material constants for the epoxy resin matrix were determined through creep and tensile tests, and a generalized Maxwell model with 15 elements was used to represent viscoelastic behavior. Numerical simulations employed the Abaqus/Standard 2020 software, with the epoxy resin matrix behavior implemented via a UMAT subroutine. The analysis revealed a linear relationship between entropy and residual strength for both cyclic tensile and out-of-plane shear loading. This approach enhances experimental insights with numerical predictions, offering a comprehensive understanding of CFRP strength degradation under fatigue loading. This study represents the first numerical approach to link the entropy of the matrix resin at the micro-scale with macro-scale residual strength in CFRP, providing a novel and comprehensive framework for understanding and predicting strength degradation under cyclic loading.
Original language | English |
---|---|
Article number | 28 |
Journal | Journal of Composites Science |
Volume | 9 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 2025 |
Keywords
- CFRP
- FEM
- numerical simulation
- residual strength