Abstract
Super-Kamiokande (SK) is a 50-kt water Cherenkov detector, instrumented with ∼ 13k photo-multipliers and running since 1996. It is sensitive to neutrinos with energies ranging from 4.5 MeV to several TeV. A new framework has been developed for the follow-up of gravitational wave (GW) alerts issued by the LIGO-Virgo collaboration (LVC). Neutrinos are searched for, using a 1000-second time window centered on the alert time and in both SK low-energy and high-energy samples. Such observation can then be used to constrain the neutrino emission from the GW source. The significance of potential signals has been obtained by comparing neutrino direction with the localization of the GW. The computation of limits on incoming neutrino flux and on the total energy emitted in neutrinos by the source has been performed for the different neutrino flavors. The results using the LVC GWTC-2 catalog (covering O3a period) are presented, as well as the outlooks for the future real-time public release of follow-ups for the O4 period (in 2022) and beyond.
Original language | English |
---|---|
Article number | 947 |
Journal | Proceedings of Science |
Volume | 395 |
Publication status | Published - 18 Mar 2022 |
Event | 37th International Cosmic Ray Conference, ICRC 2021 - Virtual, Berlin, Germany Duration: 12 Jul 2021 → 23 Jul 2021 |