TY - CHAP
T1 - Evaluation of Material-Based GHG Emissions Under COVID-19 Disruption on Redesigning Global Supply Chain Network Across TPP Countries
AU - Nagao, Takaki
AU - Ijuin, Hiromasa
AU - Nagasawa, Keisuke
AU - Yamada, Tetsuo
N1 - Publisher Copyright:
© 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
PY - 2023
Y1 - 2023
N2 - In recent years, global warming has become a serious problem in a global supply chain which is a series of cross-border transaction including custom duty that is a tax imposed for imported goods. In order to prevent the global warming, Green House Gas (GHG) emissions needs to be reduced throughout the supply chain. Moreover, procurement costs, material-based GHG emissions, tariff in countries are different by each country. In addition, the Trans-Pacific Partnership (TPP), which is a free trade agreement signed between 11 countries, including Japan and Malaysia, have promoted the trade in parts and products among the TPP participant countries without customs duty. Thus, the network on the global supply chain affects not only costs but also GHG emissions. On the other hand, the disruption by COVID-19 caused adverse impacts to redesign supply chains all over the world, where parts or materials are not provided from current suppliers by the disruption. Thus, the network may be reconfigured, which brings different GHG emissions in the global supply chain network before and after the disruption across TPP countries. The purpose of this study is to evaluate material-based GHG emissions under COVID-19 disruption on redesigning global supply chain network across TPP countries. Firstly, global supply chain network is modeled and formulated. Next, numerical experiments are conducted for evaluating material-based GHG emissions under disruption scenarios. Finally, the results are analyzed in terms of GHG emissions and costs. The result shows that the highest reduction ratio of the total GHG emission on a global supply chain is 58.4% compared to the baseline.
AB - In recent years, global warming has become a serious problem in a global supply chain which is a series of cross-border transaction including custom duty that is a tax imposed for imported goods. In order to prevent the global warming, Green House Gas (GHG) emissions needs to be reduced throughout the supply chain. Moreover, procurement costs, material-based GHG emissions, tariff in countries are different by each country. In addition, the Trans-Pacific Partnership (TPP), which is a free trade agreement signed between 11 countries, including Japan and Malaysia, have promoted the trade in parts and products among the TPP participant countries without customs duty. Thus, the network on the global supply chain affects not only costs but also GHG emissions. On the other hand, the disruption by COVID-19 caused adverse impacts to redesign supply chains all over the world, where parts or materials are not provided from current suppliers by the disruption. Thus, the network may be reconfigured, which brings different GHG emissions in the global supply chain network before and after the disruption across TPP countries. The purpose of this study is to evaluate material-based GHG emissions under COVID-19 disruption on redesigning global supply chain network across TPP countries. Firstly, global supply chain network is modeled and formulated. Next, numerical experiments are conducted for evaluating material-based GHG emissions under disruption scenarios. Finally, the results are analyzed in terms of GHG emissions and costs. The result shows that the highest reduction ratio of the total GHG emission on a global supply chain is 58.4% compared to the baseline.
KW - 0–1 integer programming
KW - Bill of Materials
KW - Economic partnership
KW - Green supply chain
KW - Lifecycle inventory database
UR - http://www.scopus.com/inward/record.url?scp=85166145463&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-18641-7_4
DO - 10.1007/978-3-031-18641-7_4
M3 - Chapter
AN - SCOPUS:85166145463
T3 - Lecture Notes in Production Engineering
SP - 31
EP - 40
BT - Lecture Notes in Production Engineering
PB - Springer Nature
ER -