Ductile fracture simulation of a pipe of steam generator in PWR

Yuuki Miyajima, Masanori Kikuchi, Akiyuki Takahashi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)

Abstract

Ductile fracture of steam generator pipes may occur due to inner pressure. The final fracture process by inner pressure occurs as a burst of a pipe, and ductile high speed crack growth occurs with large deformation of the structure. For the simulation of such fracture process, Gurson's yield function is used as a constitutive equation, and large deformation theory is employed. As the simulation is conducted by load control condition, it is difficult to simulate burst phenomenon. Final fracture condition is discussed and finally crack opening displacement is chosen as burst fracture criterion. Fracture simulations of a pipe with multiple through cracks are conducted by changing distances between two crack tips. Burst loads are evaluated, and they are compared with estimated values by Maintenance rules. Surface crack problems are also simulated. Burst loads are also compared with results by limit load analysis method. Conservativeness of conventional evaluation methods are studied and discussed.

Original languageEnglish
Title of host publicationASME 2013 Pressure Vessels and Piping Conference, PVP 2013
DOIs
Publication statusPublished - 2013
EventASME 2013 Pressure Vessels and Piping Conference, PVP 2013 - Paris, France
Duration: 14 Jul 201318 Jul 2013

Publication series

NameAmerican Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
Volume1 A
ISSN (Print)0277-027X

Conference

ConferenceASME 2013 Pressure Vessels and Piping Conference, PVP 2013
Country/TerritoryFrance
CityParis
Period14/07/1318/07/13

Fingerprint

Dive into the research topics of 'Ductile fracture simulation of a pipe of steam generator in PWR'. Together they form a unique fingerprint.

Cite this