TY - JOUR
T1 - Disruption of post-thymic tolerance in skin-reactive TCR transgenic mice through the interaction of lymphopenia and intestinal microbiota
AU - Hayabuchi, Hodaka
AU - Tokifuji, Yukiko
AU - Takahashi, Hayato
AU - Amagai, Masayuki
AU - Yoshimura, Akihiko
AU - Chikuma, Shunsuke
N1 - Publisher Copyright:
© The Author(s) 2024.
PY - 2024/8/1
Y1 - 2024/8/1
N2 - Autoimmune diseases often arise from conditions where the immune system is compromised. While lymphopenia-induced proliferation (LIP) is crucial for immune system development and maturation, it is also caused by environmental insults, such as infection, and becomes a risk factor for autoimmunity in adults. We used Dsg3H1 TCR transgenic mice, whose T cells are designed to recognize desmogrein-3, a skin antigen, to explore the impact of lymphopenia on post-thymic tolerance. Dsg3H1 mice are known to delete the most highly autoreactive T cells in the thymus, and develop only subtle immune-mediated pathology in the steady state. However, we found that transient lymphopenia induced by total body irradiation (TBI) or cyclophosphamide (CY) results in massive dermatitis in Dsg3H1 mice. The symptoms included expansion and development of self-reactive T cells, their differentiation into CD44high IL-17-producing helper T cells, and severe neutrophilic inflammation. Repopulation of FOXP3+ T regulatory cells after lymphopenia normally occurred, suggesting escape of skin-reactive conventional T cells from control by regulatory T cells. Furthermore, we found that a depletion of the intestinal microbiota by antibiotics prevents CY-induced dermatitis, indicating roles of the commensal intestinal microbiota in LIP and Th17 development in vivo. The current data suggested that post-thymic tolerance of Dsg3H1 mice is established on a fragile balance in the lymphoreplete immune environment and broken by the interplay between lymphopenia and intestinal microbiota. The dynamic phenotypes observed in Dsg3H1 mice prompt a re-evaluation of opportunistic lymphopenia together with the microbiota as pivotal environmental factors, impacting individuals with genetic predispositions for autoimmune diseases.
AB - Autoimmune diseases often arise from conditions where the immune system is compromised. While lymphopenia-induced proliferation (LIP) is crucial for immune system development and maturation, it is also caused by environmental insults, such as infection, and becomes a risk factor for autoimmunity in adults. We used Dsg3H1 TCR transgenic mice, whose T cells are designed to recognize desmogrein-3, a skin antigen, to explore the impact of lymphopenia on post-thymic tolerance. Dsg3H1 mice are known to delete the most highly autoreactive T cells in the thymus, and develop only subtle immune-mediated pathology in the steady state. However, we found that transient lymphopenia induced by total body irradiation (TBI) or cyclophosphamide (CY) results in massive dermatitis in Dsg3H1 mice. The symptoms included expansion and development of self-reactive T cells, their differentiation into CD44high IL-17-producing helper T cells, and severe neutrophilic inflammation. Repopulation of FOXP3+ T regulatory cells after lymphopenia normally occurred, suggesting escape of skin-reactive conventional T cells from control by regulatory T cells. Furthermore, we found that a depletion of the intestinal microbiota by antibiotics prevents CY-induced dermatitis, indicating roles of the commensal intestinal microbiota in LIP and Th17 development in vivo. The current data suggested that post-thymic tolerance of Dsg3H1 mice is established on a fragile balance in the lymphoreplete immune environment and broken by the interplay between lymphopenia and intestinal microbiota. The dynamic phenotypes observed in Dsg3H1 mice prompt a re-evaluation of opportunistic lymphopenia together with the microbiota as pivotal environmental factors, impacting individuals with genetic predispositions for autoimmune diseases.
KW - T cell
KW - animal model
KW - autoimmunity
KW - peripheral tolerance
KW - psoriasis
UR - https://www.scopus.com/pages/publications/85198680521
U2 - 10.1093/intimm/dxae018
DO - 10.1093/intimm/dxae018
M3 - Article
C2 - 38576231
AN - SCOPUS:85198680521
SN - 0953-8178
VL - 36
SP - 413
EP - 424
JO - International immunology
JF - International immunology
IS - 8
ER -