CTCF-mediated 3D chromatin sets up the gene expression program in the male germline

Yuka Kitamura, Kazuki Takahashi, So Maezawa, Yasuhisa Munakata, Akihiko Sakashita, Shawna P. Katz, Noam Kaplan, Satoshi H. Namekawa

Research output: Contribution to journalArticlepeer-review

Abstract

Spermatogenesis is a unidirectional differentiation process that generates haploid sperm, but how the gene expression program that directs this process is established is largely unknown. Here we determine the high-resolution three-dimensional (3D) chromatin architecture of mouse male germ cells during spermatogenesis and show that CTCF-mediated 3D chromatin dictates the gene expression program required for spermatogenesis. In undifferentiated spermatogonia, CTCF-mediated chromatin interactions between meiosis-specific super-enhancers (SEs) and their target genes precede activation of these SEs on autosomes. These meiotic SEs recruit the master transcription factor A-MYB (MYBL1) in meiotic spermatocytes, which strengthens their 3D contacts and instructs a burst of meiotic gene expression. We also find that at the mitosis-to-meiosis transition, the germline-specific Polycomb protein SCML2 facilitates the resolution of chromatin loops that are specific to mitotic spermatogonia. Moreover, SCML2 and A-MYB help shape the unique 3D chromatin organization of sex chromosomes during meiotic sex chromosome inactivation. We propose that CTCF-mediated 3D chromatin organization regulates epigenetic priming that directs unidirectional differentiation, thereby determining the cellular identity of the male germline.

Original languageEnglish
Article number4856
JournalNature Structural and Molecular Biology
DOIs
Publication statusAccepted/In press - 2025

Fingerprint

Dive into the research topics of 'CTCF-mediated 3D chromatin sets up the gene expression program in the male germline'. Together they form a unique fingerprint.

Cite this