Abstract
The interleukin-6 (IL-6) amplifier, which describes the simultaneous activation of signal transducer and activator of transcription 3 (STAT3) and NF-κb nuclear factor kappa B (NF-κB), in synovial fibroblasts causes the infiltration of immune cells into the joints of F759 mice. The result is a disease that resembles human rheumatoid arthritis. However, the kinetics and regulatory mechanisms of how augmented transcriptional activation by STAT3 and NF-κB leads to F759 arthritis is unknown. We here show that the STAT3-NF-κB complex is present in the cytoplasm and nucleus and accumulates around NF-κB binding sites of the IL-6 promoter region and established a computer model that shows IL-6 and IL-17 (interleukin 17) signaling promotes the formation of the STAT3-NF-κB complex followed by its binding on promoter regions of NF-κB target genes to accelerate inflammatory responses, including the production of IL-6, epiregulin, and C-C motif chemokine ligand 2 (CCL2), phenotypes consistent with in vitro experiments. The binding also promoted cell growth in the synovium and the recruitment of T helper 17 (Th17) cells and macrophages in the joints. Anti-IL-6 blocking antibody treatment inhibited inflammatory responses even at the late phase, but anti-IL-17 and anti-TNFα antibodies did not. However, anti-IL-17 antibody at the early phase showed inhibitory effects, suggesting that the IL-6 amplifier is dependent on IL-6 and IL-17 stimulation at the early phase, but only on IL-6 at the late phase. These findings demonstrate the molecular mechanism of F759 arthritis can be recapitulated in silico and identify a possible therapeutic strategy for IL-6 amplifier-dependent chronic inflammatory diseases.
| Original language | English |
|---|---|
| Pages (from-to) | 403-421 |
| Number of pages | 19 |
| Journal | International immunology |
| Volume | 35 |
| Issue number | 9 |
| DOIs | |
| Publication status | Published - 1 Sept 2023 |
Keywords
- IL-17
- IL-6
- arthritis model
- computer modeling
- cytokine