Chondrocyte spheroids on microfabricated PEG hydrogel surface and their noninvasive functional monitoring

Hidenori Otsuka, Masako Nagamura, Akie Kaneko, Koichi Kutsuzawa, Toshiya Sakata, Yuji Miyahara

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)

Abstract

A two-dimensional microarray of 10 000 (100 × 100) chondrocyte spheroids was constructed with a 100 μm spacing on a micropatterned gold electrode that was coated with poly(ethylene glycol) (PEG) hydrogels. The PEGylated surface as a cytophobic region was regulated by controlling the gel structure through photolithography. In this way, a PEG hydrogel was modulated enough to inhibit outgrowth of chondrocytes from a cell adhering region in the horizontal direction, which is critical for inducing formation of three-dimensional chondrocyte aggregations (spheroids) within 24 h. We further report noninvasive monitoring of the cellular functional change at the cell membrane using a chondrocyte-based field effect transistor. This measurement is based on detection of extracellular potential change induced as a result of the interaction between extracellular matrix protein secreted from spheroid and substrate at the cell membrane. The interface potential change at the cell membrane/gate interface can be monitored during the differentiation of spheroids without any labeling materials. Our measurements of the time evolution of the interface potential provide important information for understanding the uptake kinetics for cellular differentiation.

Original languageEnglish
Article number064217
JournalScience and Technology of Advanced Materials
Volume13
Issue number6
DOIs
Publication statusPublished - Dec 2012

Keywords

  • 3D cell culture
  • field effect transistor (FET)
  • glycosaminoglycan (GAG)
  • spheroid, bovine articular cartilage

Fingerprint

Dive into the research topics of 'Chondrocyte spheroids on microfabricated PEG hydrogel surface and their noninvasive functional monitoring'. Together they form a unique fingerprint.

Cite this