Bilateral control using functional electrical stimulation with reaction torque observer

Tomoya Kitamura, Naoto Mizukami, Sho Sakaino, Toshiaki Tsuji

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Citations (Scopus)

Abstract

This paper describes bilateral control using functional electrical stimulation (FES) with reaction torque observers (RTOB). Bilateral control provides force feedback in teleoperation systems. This technology has many potentials in daily activities. For example, it could allow medical doctors to deliver first aid in remote locations or allow humans to communicate using tactile sensation. However, when controlling bodies, operators generally must wear robot arms. However, wearing robot arm has several disadvantages; for instance operators feel restrained, and it is difficult to create the robot arms with multi degree-of-freedom. To solve these problems, bilateral control using FES has been studied. FES can control human bodies using small pads. However, in conventional studies of bilateral control using FES, the reaction force of the operated subject is not transmitted successfully to the operator. Therefore, we propose a method in which the reaction force of the operated subject is estimated using RTOB. We conducted experiments in which, the elbow joints of five healthy subjects were controlled by a bilateral controller. A force controller controlled the operators, and a position controller controlled the operated humans. The experimental results show that the reaction force of the operated subjects was successfully transmitted to the operators. The operators were able to recognize the position of an obstacle on operated subjects' side. In addition, tracking error was reduced compared to that obtained in past studies using conventional methods.

Original languageEnglish
Title of host publication2016 IEEE 14th International Workshop on Advanced Motion Control, AMC 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages160-166
Number of pages7
ISBN (Electronic)9781479984640
DOIs
Publication statusPublished - 20 Jun 2016
Event14th IEEE International Workshop on Advanced Motion Control, AMC 2016 - Auckland, New Zealand
Duration: 22 Apr 201624 Apr 2016

Publication series

Name2016 IEEE 14th International Workshop on Advanced Motion Control, AMC 2016

Conference

Conference14th IEEE International Workshop on Advanced Motion Control, AMC 2016
Country/TerritoryNew Zealand
CityAuckland
Period22/04/1624/04/16

Fingerprint

Dive into the research topics of 'Bilateral control using functional electrical stimulation with reaction torque observer'. Together they form a unique fingerprint.

Cite this