Atomistic-continuum modeling of dislocation interaction with Y 2O3 particles in iron

Akiyuki Takahashi, Zhengzheng Chen, Nasr Ghoniem, Nicholas Kioussis

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)


Oxide dispersion strengthened (ODS) steels are promising candidates for applications in fusion and fission rectors. Y2O3 particles dispersed in an iron matrix drastically improve the strength without adverse effects on ductility. We investigate here details of the dislocation core structure in Y2O3 precipitates, and at the interface between the iron matrix and the Y2O3 precipitate. We also simulate dislocation interaction with nano-size Y2O3 precipitates. It is shown that the γ-surface energies on planes between oxygen atoms and metallic atoms are extremely high, and that dislocations in an iron matrix cannot penetrate into Y2O3 particles. Three-dimensional parametric dislocation dynamics simulations of the interaction between an edge dislocation and an Y2O3 particle are carried out. The results show that the critical resolved shear stress (CRSS) has a strong dependence on the lattice mismatch Y2O3 particles and the iron matrix, and that it is lower than analytically calculated values of the Orowan stress.

Original languageEnglish
Pages (from-to)1098-1101
Number of pages4
JournalJournal of Nuclear Materials
Issue number1-3
Publication statusPublished - 1 Oct 2011


Dive into the research topics of 'Atomistic-continuum modeling of dislocation interaction with Y 2O3 particles in iron'. Together they form a unique fingerprint.

Cite this